
A RAND NOTE

N (Prefetching Simulation Objects in a
(0 Persistent Simulation Environment

Christopher Burdorf, Stephanie Cammarata

November 1989

DTIC

ELECTE
NOV 0 7 1980

RAND

The reseaich described in this report was sponsored by the

Defense Advanced Research Projects Agency under RAND's

National Defense Research Institute, a federally funded

research and development center supported by the Office

of the Secretary of Defense, Contract No. MDA903-85-C-0030.

This Note contains an offprint of RAND research originally published in a journal
or book. The text is reproduced here, with permission of the original publisher.

The RAND Publication Series: The Report is the principal publication documen-
ting and transmitting RAND's major research findings and final research results.
The RAND Note reports other outputs of sponsored research for general distri-
bution. Publications of The RAND Corporation do not necessarily reflect the

opinions or policies of the sponsors of RAND research.

Published by The RAND Corporation

1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

A RAND NOTE N-3050-DARPA

Prefetchina Simulation Objects in a

Persistent Simulation Environment

Christopher Burdorf, Stephanie Cammarata

November 1989

Prepared for the
Defense Advanced Research Projects Agency

RAND
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prefetching Simulation Objects in a Persistent Simulation Environment*

Christopher Burdorf(burdorffrand.org) Stephanie Cammarata(stephorand.org)
The RAND Corporation

1700 Main Street
Santa Monica, CA 90406-2138

Abstract scaled up to efficiently support and maintain many more ob-
jects than existing memory-based object-oriented languages.

We describe a persistent simulation environment (PSE) for Most POS projects are concerned with seamless integration
object-oriented simulation. PSE is implemented in the Coin- of simulation language features and traditional data man-
mon Lisp Object System (CLOS) with extensions for persis- agement capabilities, such as transaction management and
tence, object-oriented simulation, and prefetching of objects. multi-user access [Atkinson and Buneman 1987, Ford 1988,
Object prefetching optimizes the swapping of persistent ob- Khoshafian 1989]. Although these issues are critical to the
jects to and from main memory. It is a type of smart virtual success of persistent object systems, our efforts specifically
memory system that retrieves objects required by the ap- focus on one problematic aspect of POS: efficient access of
plication program. We discuss prefetching for two different persistent simulation entities. Persistent maintenance of oh-
algorithms: Dijkstra's shortest path algorithm and the trav- jects on secondary storage has the advantage that objects are
eling salesman. Finally, we analyze the use of prefetching by no longer tightly coupled to the simulation system; that is,
presenting empirical and theoretical results for performance the objects reside in their own repository and can be inde-
improvements. pendently perused before, during, or after a simulation ses-

sion. However, persistent objects entail disk accesses when
the simulation requires objects not resident in the simula-
tion's virtual image. Nevertheless, when considering the ben-
efits afforded by POS for sharing, reusing, and maintaining

In this paper, we describe our development work on a simulation objects, the advantages outweigh its costs. With
methodology and prototype architecture for tightly coupling the techniques we are developing for optimized object access,
two independent software environments: object-oriented POS will become even more attractive in the future.
database management systems (OODBMS) and object-
oriented simulation languages. The resulting "Persistent Sim-
ulation Environment" (PSE) stores input and output simu- 2 PSE Objectives
lation data as persistent objects. During simulation process-
ing, PSE's manipulation of persistent entities is transparent The goal of PSE is to btreamline the access of objects by "ob-
to both simulation programmers and users. ject prefetching". During the execution of a typical POS, oh-
- The results of this work will contribute to the PRISM jects are retrieved from secondary storage when required by
(Productivity Improvements in Simulation Modeling) project the application program. Object replacement algorithms sim-
supported by the Air Force Human Resources Laboratory. ilar to those used for virtual memory, such as, "least recently
The goal of this project is to improve productivity and re- used" are generally employed for swapping objects in and out
sponsiveness of organizations within the Air Force which pro- of memory. Our methodology promotes a "supply-driven"
vide capability assessments through discrete-event simulation model of object swapping rather than traditional "demand-
models. / (-"Z - driven" algorithms. A supply-driven methodology predicts

Persistent object systems (POS) which make use of sec- in advance which objects the simulation will need and loads
ondary storage will enable object-oriented simulations to be them into primary memory before the simulation requests

*rhis researcii v- sponsored by the Air Force Human Re- them. However, to make predictions about the simulation's
sources Laboratory through the Defense Advanced Research future data requirements, knowledge of the application and
Projects Agency under the auspices of RAND's National Defense semantics of the simulation scenario is needed. Therefore, we
Research Institute, a Federally Funded Research and Development categorize out work as "semanti--based object prefetching".
Center sponsored by the Office of the Secretary of Defense. Views Our techniques are based on the identification of a "work-
and conclusions contained in this document are those of the au- ing set" of objects for any active object being processed by
thors and should not be interpreted as representing the official the simulation. The working set consists of objects which
opinion of AFHRL, DARPA, the U.S. Go,.ernmpnt, or A,,y person
oi agency connected with them. , ,l, be subsequently requested. A working

set can be defined by geographic locale, temporal locale, or

Reprinted from the Society for Computer Simulation Multiconference on Object-Oriented Simulation. 0 The Society
for Computer Simulation. Reprinted by permission.

semantic similarity with respect to the active object. Our and secondary memory. The object identifier works well as

initial testbed applications focus on a working set based on a symbolic pointer because to access a persistent object. the

geographic locality. system uses the object identifier to hash into the persistent

object directory which returns the object handle.

2.1 Prefetching in PSE
Large-scale simulations, such as those done at RAND, may
contain thousands of objects. Our laboratory has generated The object handle is a data structure which is stored iii main

80,000+ map objects for terrain based modeling. We find memory and used to locate the object instance in the per-

that up to 20,000 of these objects can be loaded into the sistent object file. The object directory is a ha-h table that

CLOS environment on a workstation with 16 megabytes of maps the object identifier into the object handle. An object

main memory before the virtual memory system will have handle contains the following fields:

to do excessive paging to manage the size of the virtual im- 1. Id - A unique id constant for the life of the object.
age. Such excessive paging can greatly degrade the perfor- 2. Instance - A pointer to a CLOS instance containing the
mance of the simulation. The persistent object capabilities object's attributes.

allow objects to be prefetched based on the geographic local-
ity of objects, instead of virtual address space locality. The 3. Mode - The update mode (local-copy, deferrcd-npdnte,
geographic locality of map objects refers to objects that ge- or direct-update).

ographically reside near each other (eg. cities, roads, etc.). 4. Indb - Indicates if the object is stored in the database

We claim that it is more efficient to swap objects based on or not.

geographic locality than virtual memory address locality, be- 5. Modified - Indicates whether or not the instance has

cause as an object traverses the terrain, it is likely to interact been modified.
with objects in nearby geographic locations. However, in a 6. File-pointer - A pointer to the object's location in sec-

conventional virtual memory system there is no guarantee ondary memory.
that objects with virtual address locality will be geograph-
ically local as well. The current prefetching capabilities of . Object-e gth - The number of bytes for the objects
PSE fetch objects into main memory based on geographic representation in secondary memory.
locale. 8. In-mernory - Indicates whether or not the object is res-

Whether the number of objects is excessive or not, persis- ident in memory.

tent objects reside on secondary memory. Objects can then In our PSE implementation, we added the file-pointer and
be inspected and retrieved using the query language of the objet-length fields to the object handle to implement the in-

back-end object management system. The persistent objects terface with our file system. We eliminated the pinned field.
can also be shared between simulations and can be reused. used in Picasso, because it was not necessary for our pur-
Our initial results indicate a fourfold spcedup when read- poses.
ing 20,000+ previously formatted objects stored in our PSE
file system, compared to reading and formatting the same 3.3 Object Directory
objects each time for non-persistent CLOS.

In PSE, a directory maps an object's identifier to a direc-
tory "handle." When an object's identifier is referenced in

3 PSE Architecture the simulation, the object's handle is transparently accessed

to determine the status of the object. For example, a flag in
We based the kernel implementation of PSE on the SOH the handle indicates whether the object is resident in primary
(Shared Object Hierarchy which is part of the Picasso persis- memory; another handle field records the object's location in
tent object system) [Rowe 1986, Rowe 19881, obtained from secondary memory. Handles are invisible to the programmer.
UC Berkeley. We made the following modifications (described thereby achieving a seamless integration of the object system
below) to Picasso to support our objectives: 1) made object and the file management system. However, the object direc-
identifiers remain constant for the life of the object; 2) added tory must permanently reside in primary memory because it
fields to the object handle; 3) reduced the size of the object is the only intprface between PSE and the file system.
directory by 50%; and 4) interfaced the Picasso shared object During POS processing, one major objective affecting per-
hierarchy with our own file system. formance is to maintain a large working set of objects in

primary memory. We found that the directory for Picasso

3.1 Object Identifiers objects was especially large and occupied space that could
otherwise be allocated to objects. Therefore, to accommo-

In Picasso a nte,; bject identifier is created each time an ob- date the largest working set possible, we reduced the size of
ject is instantiated for a new application. In PSE, we have the PcF'- Air- ,rv by 50f% throuhn .. uijann ie.nip,'-
4_11,ifv .,. 'c use of obir ;cntifieis so that rhey remain con- Because these reduction techniques are independent of the
stant for the life of the object. Thus, the object identifier is file system interface, in the future we can port them with no
the representation of the pointer to an object in both primary 2 change in their specification.

3.4 File-based Objects manner similar to that used for a multiprocessor Lisp sys-
tern We 'have used Dijkstra's algorithm to monitor system

The Picasso system interfaces with the extended relational te m ete us ed i st i th to montrminte

DBMS, POSTGRES [Stonebraker and Rowe 1985). In our parameters (described in section 5) to help determine the
imlementatio P o f E [erpaed P Rowe w9.ith our amount of speedup we can attain. Nonetheless, factors suchimplementation of PSE, we replaced POSTGRES with our

own file system for more control over data manipulation and as muhiprocessor system overhead can not be determined on

because our experimentation doesn't require tihe sophisti- a uniprocessor system, and therefore we would like to even-
cated DBMS facilities offered by POSTGRES. tually test prefetching techniques on a multiprocessor Lisp

The file system in PSE facilitates random access of objects. system to determine actual performance improvements.

rFie file system inputs the object from secondary memory,
using the file pointer, and instantiates it as a database ob- 4.2 Traveling Salesman Algorithm
ject. W," extended CLOS by defining methods to go indirectly An alternative file structure that we will be exploring in the
through the handle's instance pointer to access and modify future would allow for a different kind of prefetching than
slots in an object. The ability to add methods to these low described for Dijkstra's algorithm. Because most geographic
level primitives allows for a simple and transparent extension objects include a location attribute, these objects can be
to CLOS that enhances it for persistence. PSE is loosely cou- stored in a binary-tree file structure sorted on two dimen-
pled to its file system, so when PSE becomes more mature, sions: latitude and longitude. Persistent objects would reside
we can easily replace its current file manager with POST- in subtrees where all other objects in the subtree would have
GRES or some other DBMS. the same geographic proximity. As the simulstion progresses,

when an object not in memory is accessed, the system will

4 Application Areas retrieve the object and initiate a processor to retrieve all the

objects geographically local to it. Such a methodology is sim-

We have acquired a large collection of map objects for terrain- ilar to paging in a virtual memory system, except that the

based simulation. The map data is stored in a representation page is based on geographic locale instead of virtual memory

that can be converted into PSE objects. The map objects addresses. Likewise, when a page of local objects is retrieved,

consist of roads, cities, road intersections, dead ends, rivers, if the number of objects in memory will infringe on perfor-

and bridges. A class hierarchy to describe the map objects mance, the system frees up space by writing out a page of

consists of edge objects (roads) and node objects (cities, road objects. The system keeps a count each time an object is

intersections, dead ends, and bridges). Since the map data is referenced and writes out pages of objects that are least re-

broken into nodes and edges, it applies well to graph theory cently used. Effectively, this constitutes a virtual memory

algorithms. The most useful type of graph theory algorithm system based on objects and geographic locale.

for the map data are shortest path algorithms. The shortest This alternative approach for fetching objects would apply

distance algorithm is used by a moving object when navigat- better to the traveling salesman problem than to Dijkstra's

ing a road network, shortest path algorithm. Dijkstra's algorithm does not ensure
that all nodes accessed to find the minimum label will be
geographically local to one another. However, the traveling

4.1 Dijkstra's Shortest Path Algorithm salesman nearest neighbor heuristic moves from location to

To determine the shortest path, we have modified Dijkstra's location and looks to its immediate neighbors to find the

shortest path algorithm [Gould 1988] to save the nodes tra- shortest traversal through the graph.

versed for the shortest path. Dijkstra's algorithm works by

iteratively finding the minimum label from any of the nodes
whose distance to the start node is known. It updates paths 5 Analysis of Prefetching Dur-
as it finds newer ones which are shorter. It then adds the ing Map Traversal
closest node to its list of known nodes. To find the mini-

mum label, Dijkstra's algorithm accesses all nodes adjacent Prefetching of persistent objects decouples the input and in-
to those whose distance from the start node is known. It stantiation of an object from the behavior and processing
must access the location fields in all these adjacent nodes to ot a simulation. The key to object prefetching is the ability
determine which node is nearest. to predict in advance when objects will be needed by the

Prefetching of objects applies to the operation of itera- simulation. Toward this goal we have been collecting perfor-
tively finding the minimum label. While the algorithm is mance data during numerous PSE trials to compare times for
determining the distance to the current adjacent node, we simulation processing against times for object management,
can activate a separate process to retrieve the next adjacent i.e., reading and instantiating objects. Our testbed scenario 0
node. The procedure continues until the minimum label has consisted of the traversal of a connected graph (digital car- 0
been found. tographic data) containing 79 edges (roads) and 8t vertices

We have implemented a testbed for prefetching with the (road intersections). PSE supports programmer control over

modified Dijkstra's algorithm. 6Stiag the multi-process facil- the number of objects resident in main memory by setting the
ity of Allegro Common Lisp, we have written the code in value of the global variable *memory-full*. When the num-

(rodes,.. EL --d/or

&:, cta

ber of objects instantiated in main memory equals the value 2100 -

of *memory-full*, subsequent reference to an object not in
memory causes garbage collection of unused memory-based 1800
objects to make room for a newly referenced object. 1500

Object
5.1 Experimental Results Read 1200-

In our discussion below, we identify three factors which Time

play a rule in the potential improvements afforded by ob- (CPU 900 N
ject prefetching: (1) object maintenance, (2) object faults, Seconds) 600
and (3) "prediction-to-access gap." Tests revealed that, on
average, 97% of the total run time time is spent for ob- 3
ject maintenance. Only the remaining 3% is consumed by 300
the application program. Furthermore, only 4% of the object 0
management time occurred inside the operating system's 1/0 25 50 75 100 125 150 175
routines. Therefore, I/O time is small, but the time spent
by Lisp building data structures for the input and instan- Maximum Number of Objects in Memory
tiation of instances is extremely large. Figure 1 illustrates
total execution time for map traversals with varying values Figure 2: Object read times during Dijkstra traversal

of *memory-full*. If PSE allowed all referenced objects to re-
side in main memory concurrently, (by setting *memory-full*
greater than 166, where 166 is the total number of objects), memory which subsequently causes the system to read the

the run times are very small. In Figure 2, we conducted the instance from secondary memory, instantiate it, and return
its value. By recording the frequency of object faults, we de-

same tests but instead recorded only the processor time spent te ho oten a simu n wa be blked e

for object management. Comparing these graphs indicates termined how often a simulation was being blocked by tle

that input and instantiation of persistent objects is a critical need to access an object not resident in main memory. The

area where performance improvements could have the great- graph in Figure 3 plotting object faults against differing val-

est positive results. Timings also show that it costs roughly ues of *memory-full* shows the results which we expected.

90 CPU milliseconds to fetch an instance from secondary 21000
storage, although the number will undoubtably change once
PSE is interfaced with a DBMS. 18000

2100 -

15000

1800

Object 12000

CPU 1500 Faults 9000
R u n 1200 -
Time 1200

(CPU 900 6000

Seconds) 3000

600 I
300 I 0-25 50 75 100 125 150 175

0- 1 .WILT_ Maximum Number of Objects in Memory

25 50 75 100 125 150 175 Figure 3: Object faults during Dijkstra traversal

Maximum Number of Objects in Memory
Finally, the third factor which is important to consider,

Figure 1: Run Times During Dijkstra Traversal addresses the "prediction-to-access gap." This interval is the

time between when the system predicts that it needs an ob-
ject and when the object actually gets accessed. In order

Another issue related to object maintenance which con- to effectively prefetch objects, two conditions are required:
tributes to performance degradation is the occurrence of ob- (1) the need to accuiately predict some percentage of object
ject faults. An object fault occurs when the simulation re- faults.and (2) evidence that, on average, the "prediction-to-
quests a slot value from an object that is not in primary access gap," is greater that the overhead for prefetching an

4

object. Percentages of object faults which PSE can predict ject maintenance. In this diagram, the followliig time stamps
is shown is Figure 4. These results show that as the num- and intervals are identified:
ber of objects resident in memory increases, object predic-
tion improves. One explanation for this phenomenon is that t o simulation begins

when the value of *memory-full* is small, memory fills up t.. _ prediction that object O will be referenced;
much quicker than when its value is large causing objects t2 object 0 is referenced:

to be garbage collected more frequently. Thus, the likelihood simulation is interrupted by object fault;

that an object will be swapped out after it is prefetched, but fetching of object 01 begins

before it is referenced, increases. As a result, prefetching be- 6. fetching of object 01 ends:
comes more than just the act of fetching an object before it is simulation resumes
needed: the prefetching algorithm should be synchronized so t2 - tl prediction-to-access gap
that (I) the object is fetched before it is accessed and (2) the 13 - 1t time to fetch object O1;
object is not swapped out of memory between the time when interval when simulation is blocked
it has been fetched and the time when it will be referenced.
This narrowing of the prediction-to-access gap results in a
lower percentage of total object faults that can be predicted. to ti t 2

ts
The prefetching algorithm used for Figure 4, doesn't take into application
account that *memory-full* may be exceeded before an ob- processing I
ject is referenced, and thus predicts a lower amount of object I
faults as the value of *memory-full* is reduced. A smarter I

prefetching algorithm would be able to predict a larger per- I
centage of object faults when *memory-full* is small and is object
an area worthy of further study. maintenance I

100 - I

90 - Figure 5: Time line for single processor execution

80 - Since the costs of accessing and instantiating an instance
from secondary sorage are so high and have such a large im-

70 - pact on performance, it would be advantageous to interface
object prefetching with a multiprocessor system. A multi-

percent 60 - processor PSE architecture will allow a separate processor

of to handle the input and instantiation of objects thus reduc-

Object 50 - ing the number of object faults. Three significant parameters
Faults which determine whether a multiprocessor system will result

40 - in performance improvements are (1) the time to prefetch
an object: (2) the prediction-to-access gap; and (3) process

30 - overhead, that is, the overhead of spawning a prefetching pro-

cess. Below, we present three cases based on different values
20 - of these parameters indicating what improvements could be

expected with a multiprocessor PSE system. We also include
10 - a time line similar to Figure 5 for two of the three cases.

In) the discussion below, let T1 , Tg, and T. denote the
0 - T prefetching time, prediction-to-access gap, and process over-

25 50 75 100 125 150 175 head respectively.

Maximum Number of Objects in Memory

Figure 4: Percentage of total object faults which were Case 1: (See Figure 6)

predicted during Dijkstra traversal I T0 + T f < 7'

th1n the best performance improvement will be achieved;

the simulation will perform as if all objects are memory
5.2 Theoretical Results resident.

The performance improvement of Case 1 over single pro-
Our initial findings suggest that prefetching may be a viable

approach to improving performance under certain conditions. cessing is: T - T,
In terms of Figure 6, the performance improvement is:

Figure 5 shows an abstracted time line of simulation execu- I tme units.

tion distinguishing between application processing and ob- t11 - I, time units.

The following time stamps and intervals used in Figure 6 The following time stamps and intervals used in Figure 7

to simulation begins
t o simulation begins

tj prediction that object 01 will be referenced; t1 prediction that object 01 will be referenced:

initialize prefetching processor initialize pitetching processor

t_ _ prefetching of object 01 begins tI, prefetching of object 01 begins

till prefetching of object 01 ends t2 object 0 is referenced;

12 object O1 is referenced; simulation continues; simulation is interrupted by object fault

no object fault because object was prefetched tiit prefetching of object 01 ends;

ti - t1 process overhead time (T.] simulation resumes

ti If- tiI object prefetching time [Tf] ti, - hi process overhead time [70)
t2- tl prediction-to-access gap [T] t2 - ti prediction-to-access gap [T.]

ti - tii object prefetching time [71]
to ti t, tti It t 2 t t - 2 interval when simulation is blocked

application I o t 1 t2

processing
I

2

I application 'tI3
I Iprocessing I

I II II I

object I
maintenance I I I I

I 9~bject >
I maintenance I I I

I ~I
Figure 6: Time line for multiprocessor execution when I

prefetching terminates before object is referenced
Figure 7: Time line for multiprocessor execution when

prefetching terminates after object is referenced.

Case 2: (See Figure 7) Loop A:

If T < T, and Case 1 does not hold (DOLIST (OBJ OBJECT-LIST)
then performance improvement over single processing is: (FO OBJ))

T,- T
and the simulation is blocked for: Loop B:

T + T -T9

(DO ((OBJ (CAR OBJECT-LIST) (CAR REST))

In terms of Figure 7, the performance improvement is: 12 - (REST (CDR OBJECT-LIST) (CDR REST))

t, l and the interval when the simulation is blocked is: t 1ll- t 2 (OBJ-TO-FETCH

time units. (WHEN (CDDR OBJECT-LIST)

(PRE-FETCH (CADDR OBJECT-LIST)))
Case 3: (WHEN (CDDR REST)

(PRE-FETCH (CADDR REST)))))
If T, >= T ((NULL REST) NIL)

then multiprocessor prefetching will degrade (FO OBJ))

performance compared to a single process system.

Loop A sequentially accesses all of the objects in an object

5.3 Converting Single Process Code to list and applies function FOO to each object. Loop B does the
same, but it also prefetches an object during each iteration,

Enable Multiprocessor Prefetching beginning with the third object on through the end of the list.

In the following section we present an example of how Experiments show that the prefetching in loop B predicted

prefetching can be used in iterative loops where each pass 88% of the total object faults caused by the loop.

through the loop accesses successive persistent objects in a

list. Our experience in simulation programming shows that

such iterative loops are a common operation. Loops similar 6 Conclusions and Future Work
to loop A below can be replaced by loops resembling B that The conclusions we reached for performance improve-

utilize prefetching. ments are strictly theoretical results; our future goal

61

is to explore a multiprocessor architecture dnid corn- [Howe 19s tw.L. A. ,j lPICASSO S liared Object llierar-

pare the theoretical conclusions to empirical results. To- cliv %+. Proccg dings of tht Fir 4 (1.OS Usti an gd Ina-
Ward this end, we are considering severalI multiprocessor pb im oitors Wlorksihop, Palo Alto. Ca.it October 1 9X8.
Lisp systems [Goldman and Gabriel 1989, Zorn et. al. 1989 [Stonebraiker anid Howe 1985) Sionebraker.\M., Rowe L. A.,
Hlalstead 1985] which are in various stages of development. FTh D~esign of POSIG R E S- Memrorandumi No.
One factor we must consider is how multiprocessor system Vt 'I/ER I.1 85/95. University of Ca~ifornia. BerkeleY.
overhead will effect performance, but it appears that the C.A. Novemiiber 1-3, 1985.
overhead is quite small. (Halstead mentions that Mlultilisp one.a.193ZonBflNFag.. SrnjoL.
takes 6 milliseconds to create a future). (one.a.18]ZrBloKLrs .Srnao .

Another direction we will be seriously pursuing is to inter- and II illingcr, 1P.. -L.ISP Extensions for l tilt iprocess-

face PSE with a commercial object-oriented DBMTS, such as ing," lroctedings of the 22nd Annual llatozi Jnterna-

Gemstone, IPOSTGRES, Vbase, or Craphael. By uising Gem- tgonal 'on ft rcnce on Systcrns St it i ~.January. 1989.

stone as a backend object manager on a separate workstation,
we miav achieve some improvement by use of a dual-processor

architecture over a single processor system. In p~arallel with
investigating new architectures. we will also bie experiment-
ing with other prefetching techniques, other application pro-
grams anti larger sets of memory and disk resident objects.

7 Acknowledgemnents,
We'd like to thank Lawrence Rowe and Yongdong W'antg for
allowing access to the source code of the Shared Object Ili-
era re y.

References
[Atkinson and Bunemait 1987] Atkinson, "J. P., 0. Peter

Btuneman, "Types and Persistence in Database Pro-
grammiing Languages", A CH Computing Surveys. VOL
19, No. 2. June, 1987, pp. 105-190.

[Ford 1988] Ford, S., et. al., "Zeitgeist: Database Support for
Object-Oriented Programmitng", Proceedings of the 2nd
International Workshop on Object-Oriented Duitabasr

Systcms, Bad Munster am Stein-Ebernburg, FRG,
September. 1988. pp. 23-42.

[Goldman and Gabriel 1989] Goldman, R. and Gabriel, R.

P., "Qlisp: Parallel Processing in Lisp," Proceedings of
the 22nd Annual Hawaii International Conference on
Systems Sciences, January, 1989.

[Gould 1988] Gould, R. Graph Theory,
Benjamiti/Cummings, 1988.

[Ilalstead 19853 Halstead. R. 11., "Multifisp: A Language for
Concurrent Symbolic Computationi," ACM Transac-
tions on Programming Languages an (rd Systems October.
198.5.

[lKhoshafian 1989] Khoshafian, S., "A Persistent Complex
Object Database Language", Data and Knowledge En-
gineering, Vol. 3, 1989, pp. 225-243.

[Rowe 1986] Rowe, L. ,"A Shared Object Hierarchy"
Proceedings of the IEEE International W~orkshop org

Object-Oriented Database Systems, Pacific Grove, CA,
September 1986.

7

